quinta-feira, 18 de junho de 2020


RELATIVISMO QUÂNTICO DIMENSIONAL GRACELI.


O POSICIONAMENTO E DISTANCIAMENTO ENTRE PARTÍCULAS, ENERGIAS, E FENÔMENOS ALTERAM TODO SISTEMA FÍSICO DENTRO DAS PARTÍCULAS,, 


E QUE TEM AÇÃO DIRETA SOBRE NÚMERO QUÂNTICO, ESTADO QUÂNTICO, ESTRUTURA ELETRÔNICA, NÍVEIS DE ENERGIAS, E ONDAS ESTACIONÁRIAS NAS PARTÍCULAS DENTRO DOS ÁTOMOS,

COM ISTO SE TEM MAIS UM TIPO DE NÚMERO QUÂNTICO, QUE É O NÚMERO QU^NTICO DECA OU MAIS DIMENSÕES DE GRACELI.



SENDO QUE VARIA CONFORME O SDCTIE GRACELI. 


COMO TAMBÉM O TEMPO DE FLUXOS, E SPINS, MOMENTUM DOS FENÔMENOS E ENERGIAS,

OU SEJA SENDO VARIÁVEIS CONFORME O SDCTIE GRACELI E FORMANDO O UNIVERSO DIMENSIONAL QUÂNTICO DE GRACELI.

OU SEJA, SE INCLUI NO SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI.

OU SEJA, DIMENSÕES  DE ESTADOS QUÂNTICOS DE GRACELI.


E CONFORME O SDCTIE GRACELI.




O SDCTIE GRACELI É ATEMPORAL, OU SEJA PODE SE ENCAIXAR EM QUALQUER PARTE DA FÍSICA, QUÍMICA E OUTROS, E INCLUSIVE ALGUNS ALGUMAS TEORIAS E FUNÇÕES QUE AINDA NÃO FORAM FORMULADAS.


QUANDO SE ADICIONA ALGUM TIPO DE ENERGIA EM UM SISTEMA SE MODIFICA TODO SISTEMA DE TRANSFORMAÇÕES, INTERAÇÕES, DINÂMICAS, POTENCIAIS, ESTADOS QUÂNTICOS, ESTADOS DIMENSIONAIS E FENOMÊNICOS TRANSICIONAIS DE GRACELI, E OUTROS, E CONFORME O SDCTIE  GRACELI..

O ESTADO QUÂNTICO DE GRACELI  É RELATIVO POR SER VARIÁVEL AO SISTEMA SDCTIE GRACELI, E É INDETERMINADO PORQUE EM CADA ESTRUTURA, ENERGIA, DIMENSÃO DE GRACELI, CATEGORIA GRACELI SE TEM INTENSIDADES E VARIAÇÕES ESPECÍFICAS, MESMO ESTANDO TODO DENTRO DE UM SISTEMA SÓ, CORPO, OU PARTÍCULA. 


X



⇔  A FÍSICA DIMENSIONAL GRACELI PODE SER UM BRAÇO DA QUÂNTICA, OU MESMO SER UMA RELATIVIDADE FUNDAMENTADA NUMA TERCEIRA QUANTIZAÇÃO DO SDCTIE GRACELI.

ONDE SE VÊ O MUNDO FÍSICO NÃO APENAS POR QUANTUNS DE MATÉRIA, OU RELAÇÕES DE ONDAS E PARTÍCULAS, MAS NUM MUNDO TRANSCENDENTE E DE INTERAÇÕES E TRANSFORMAÇÕES CONFORME O SDCTIE GRACELI.

OU SEJA, O UNIVERSO DECADIMENSIONAL TRANSCENDENTE DE GRACELI, E NÃO APENAS DE QUANTUNS DE ENERGIAS, OU MESMO DE RELAÇÕES DE ONDAS PARTÍCULAS, OU DE INCERTEZAS.


EM QUE SE FUNDAMENTA EM :




TERCEIRA QUANTIZAÇÃO PELO SDCTIE GRACELI

TRANS-QUÂNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.

FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.




FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D



Experimento de Afshar é um experimento ótico que pretende refutar o Principio da complementaridade de Bohr, segundo o qual um sistema quântico deve exibir propriedades de partículas e onda, mas não no mesmo experimento. Uma das afirmações de Shahriar S. Afshar é que neste experimento pode-se verificar o padrão de interferência de um feixe fóton (uma propriedade de onda) e ao mesmo tempo observar a trajetória de um fóton (trajetória é um conceito que só se aplica a partículas). A afirmação que a origem (isto é, a trajetória selecionada entre as duas trajetórias possíveis) de um fóton pode ser determinada neste experimento, é a justificação do autor para denominá-lo como um experimento de definição de caminho. Muitas das afirmações associadas a este experimento cortam caminho por várias idéias convencionais na mecânica quântica.
O trabalho experimental de Shahriar S. Afshar foi feito inicialmente no Institute for Radiation-Induced Mass Studies e mais tarde reproduzido na Harvard University, enquanto o autor era professor pesquisador da instituição. Ele apresentou seus resultados em um seminário em Março de 2004 intitulado Waving Copenhagen Good-bye: Were the founders of Quantum Mechanics wrong?.[1] O experimento foi publicado em Julho de 24, 2004 na edição da New Scientist.,[2][3] e publicado no Proc. SPIE 5866, 229-244 em Julho de 2005.[4][5]
Afshar afirma que seu experimento invalida o princípio da complementaridade com implicações mais profundas para a compreensão da mecânica quântica, alterando potencialmente a Interpretação de Copenhague e de acordo com John Cramer, a interpretação de muitos mundos. Cramer também afirma que este resultado apóia sua interpretação transacional da mecânica quântica.

Preparação Experimental e interpretação de Afshar[editar | editar código-fonte]

O experimento utiliza uma montagem similar à feita para o experimento de dupla fenda. Na variante de Afshar, a luz gerada por um laser passa através de dois furos (não fendas) ligeiramente espaçados. Através destes dois orifícios, uma lente focaliza a luz de tal forma que a imagem de cada orifício seja recebida em um fóton-detector separado (Fig. 1). Nesta configuração, um fóton que passar através do primeiro furo sensibiliza somente o detector numero 1, e similarmente, se ele passar pelo segundo furo. Então, observando-se desta forma, a montagem comporta-se com se a luz fosse fluxo de partículas, o que pode assinalar a origem para cada furo em particular.
Quando a luz atua como uma onda, por causa da interferência pode observado que há uma região que os fótons evitam, chamada de franjas escuras. Afshar agora coloca uma fina grade de arame logo após a lente (Fig. 2). A grade é colocada em uma posição predefinida de forma a coincidir com as franjas escuras de um padrão de interferência o qual foi produzido pela dupla de furos quando observado diretamente. Se um dos buracos é bloqueado, o padrão de interferência não pode mais ser formado, e uma parte da luz será bloqueada pela grade. Conseqüentemente, seria esperado que a qualidade da imagem fosse reduzida, como realmente foi observado por Afshar. Afshar então afirma que ele pode constatar as características ondulatórias da luz neste mesmo experimento, pela presença da grade.
Neste ponto, Afshar compara o resultado que é visto pelos detectores de fótons quando um dos furos é fechado com o que e visto nos detectores de fótons quando os dois furos estão abertos. Quando um furo é fechado, a grade causa alguma difração na luz, e bloqueia uma certa quantidade de luz recebida pelo fóton detector correspondente. Quando ambos os furos estão abertos, porém, o efeito é minimizado, com resultados comparáveis ao caso em que não há grade colocada na frente das lentes
A conclusão de Afshar é que a luz exibe um comportamento de onda quando passa através da grade, já que a luz passa através dos espaços entre os arames quando ambos os furos estão abertos, mas também exibe o comportamento de partícula após atravessar a lente, com os fótons passam por um dado fóton detector.
Este comportamento, Afshar argumenta, contradiz o princípio da complementaridade, desde que se exibem as características de partícula e de onda no mesmo experimento, para os mesmos fótons. Afshar afirma que este experimento também pode ser conduzido com um simples fóton e o resultado será idêntico ao experimento com alto fluxo, embora estes resultados ainda não estejam disponíveis atualmente nos dados disponíveis em Harvard.

Controvérsia[editar | editar código-fonte]

A afirmação de Afshar que este experimento viola o princípio da complementaridade tem gerado grande controvérsia e muito desta discussão tem sido divulgado por blogs e vários grupos de discussão na Internet. No final de Maio de 2005, Afshar esteve apresentando seu trabalho em vários seminários em universidades e no final de março de 2005, no encontro da American Physical Society em Los Angeles.[6] Seu trabalho foi publicado pela International Society for Optical Engineering em Julho de 2005.[4] Os resultados de Afshar também foram divulgados na New Scientist como citado acima e em outras revistas científicas. O Artigo da New Scientist em si mesmo gerou muitas respostas, incluindo várias cartas para o editor que foram divulgadas nas publicações de 7 de Agosto e 14 de Agosto de 2004. Entre esses leitores que escreveram estão Alistair Rae (Centre for Photonic Systems, Cambridge University), David Dunstan (Head of the Physics Department, University of London) e Alwyn Eades (Director of the Microscopy Center, Materials Science Department, Lehigh University) que viu as interpretações de Afshar com ceticismo.

Complementaridade[editar | editar código-fonte]

A dualidade partícula-onda é considerada como uma das características diferenciadoras da mecânica quântica e foi discutida por físicos proeminentes desde o tempo de Einstein, Bohr e Heisenberg. Uma das bases do principio de Bohr da complementaridade, que é realmente aceita como um princípio universal, é que a observação de duas propriedades, tais como a posição e o momento, requer arranjos experimentais mutuamente exclusivos. Isto pode ser ilustrado pelo experimento de dupla fenda de Young, o qual diz que a determinação da densidade de probabilidade no plano de abertura e no plano de interferência não pode se dar pela utilização das mesmas partículas.
De uma forma mais genérica, podemos dizer (Omnès, 1999) que "o principio da complementaridade estabelece tipos de linguagem mutuamente exclusivas que podem ser aplicadas na descrição de objetos, mas não simultaneamente". Isto expressa a dicotomia entre a linguagem das partículas e a linguagem de ondas as quais podem ser usadas, por exemplo, para descrever o comportamento do fóton. Mais importante, Omnès no mesmo trabalho prove uma expressão matemática precisa usando o formalismo das histórias consistentes.
Matematicamente uma formulação específica da complementaridade de Bohr pode também ser obtido com base da relação dualidade de Englert-Greenberger. A função de onda no experimento de dupla fenda de Young pode ser escrita
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde A e B representam os dois furos ou fendas. Na configuração usual sem detecção de qual caminho, a função de onda para dois furos simples é simétrica. Com o aparato plano que consiste de dois obstáculos localizados na posição de abertura. Na configuração com a detecção de qual caminho, existe uma distinção entre os dois furos. Uma boa avaliação do grau de distinção é dado por
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

Isto pode ser escrito de forma equivalente
Onde
são as probabilidades de encontrar a partícula em A ou B e CACB são as amplitudes de onda correspondentes. Particularmente tem-se D=0 sem detecção de qual caminho e D=1 quando o caminho for perfeitamente indistinguível. No campo distante dos dois furos as duas ondas interferem produzindo as franjas. A visibilidade das franjas é definida por
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

onde max e min representam os valores máximos e mínimos da densidade. Isto pode ser escrito de uma forma equivalente
Temos V=0 para um experimento no qual o caminho fique bem definido. Reciprocamente teríamos V=1 quando não houvesse distinção. Isto nos leva a ver que a relação de dualidade
é sempre verdadeira. A apresentação atual foi limitada para um estado quântico puro. Para um estado combinado temos
X

FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS =


TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

x
 [EQUAÇÃO DE DIRAC].

 + FUNÇÃO TÉRMICA.

   +    FUNÇÃO DE RADIOATIVIDADE

  ,      +   FUNÇÃO DE TUNELAMENTO QUÂNTICO.

  + ENTROPIA REVERSÍVEL 

+      FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA

 ENERGIA DE PLANCK

X


  • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......
    ΤDCG
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli + 
    DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..

  • DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.
    x
    sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].
    x
número atômico, estrutura eletrônica, níveis de energia 
onde c, velocidade da luz, é igual a .]
X
  • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI.
  • X
  • CATEGORIAS DE GRACELI
  • T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D

A interpretação desta relação e feita da seguinte forma: Considere o experimento de fenda dupla de Young para fótons com a lente e o suposto experimento feito sem o detector de caminho. Se nos detectássemos partículas na abertura plana, nos encontraríamos estatisticamente dois estreitos picos com densidade igual (D=0). Agora se nos detectamos fótons no plano focal (imagem) da lente, nos deveríamos encontrar um padrão de interferência como visibilidade V=1. Naturalmente nos então não registraríamos nenhuma partícula no plano de abertura desde que um fóton não pode ser observado duas vezes. Nos poderíamos deduzir, portanto que cada fóton tem uma probabilidade de 1/2 para sair do furo A ou B. É importante de qualquer forma observar que neste experimento um detector de fótons está ligado em cada saída informado-nos onde isto o ocorre (qual informação de caminho) e mesmo se D=0. O real significado da relação de dualidade é então somente a inferência lógica : Se o fóton é sempre detectado no plano de Fourier (informação momento) então nos somente conhecemos a probabilidade de onde isto deveria ser antes do plano abertura.
A introdução de um detector de qual caminho não muda nada na história. Tão logo cada detector de caminho seja introduzido de forma a realizar uma medição não destrutiva: Queremos observar no plano de Fourier das lentes e ao mesmo tempo saber onde ele ira vira. O fóton deve agora se entrelaçado com um outro sistema quântico ou com um grau de liberdade interno tal como o spin ou polarização. Quando o detector dispara (estado acima) nos temos função de onda adjunta como Eq. 1. Se o fóton é detectado concomitantemente, quando ele esta ainda na abertura, nos encontramos dois picos assimétricos correspondendo a:. No caso ideal um destes dois picos tem intensidade igual a zero, isto é, D=1 o qual corresponde a um perfeito experimento de definição de caminho. Agora se nos detectamos (ainda em coincidência com o detector no estado para cima) o fóton no plano de Fourier a mesma inferência lógica previamente realizada. Novamente isto e importante de se observar que neste experimento um fóton detectado diretamente no aparato nos informa onde ele esta agora (qual caminho seguido).
O experimento de Afshar não contém nenhum mecanismo para detecção de entrelaçamento. No formalismo apresentado anteriormente significa que D=0 e V=1. Como neste experimento o fóton sempre é detectado no plano de imagem da lente e não no plano de Fourier (isto é, no plano focal). A inferência lógica é aqui inversa: 'Se o fóton é sempre detectado no plano da imagem (informação espacial) então nos somente conheceríamos a probabilidade de onde ele poderia ter estado antes no plano focal (informação de momento)'. O principio da complementaridade deverá então ser respeitado neste experimento. Porém esta informação ainda esta em debate.








Difração por uma fenda[editar | editar código-fonte]

Evolução temporal de um pacote de ondas de matéria (pacote gaussiano) ao incidir sobre uma fenda única. A animação foi construída a partir da solução numérica da equação de Schrödinger dependente do tempo. Observe que há a formação de um máximo central (como esperado).
Quando uma onda atravessa uma fenda que não é estreita (por exemplo, com uma largura a) a intensidade da luz em um anteparo é dependente do ângulo entre a onda e a fenda. A intensidade é máxima na direção frontal da fenda (), mas diminui quando chega em um ângulo que depende da largura da fenda a e do comprimento de onda .[6]
Para descobrir a posição dos mínimos, primeiro dividimos a fenda em duas regiões de largura a/2. Na extremidade superior da fenda, fazemos um raio luminoso r1, e na extremidade inferior, um raio r2. Como as ondas secundárias de r1 e r2 pertencem a mesma frente de onda, elas estão em fase, mas, para produzirem um mínimo devem estar defasadas de . Supondo que r1 e r2 sejam paralelas e formem um ângulo  com o eixo central, a diferença entre as distâncias percorridas por r1 e r2 será . Igualando essa diferença a , obtemos o primeiro mínimo de intensidade em .
Fazendo o mesmo processo para mais ondas, descobrimos os próximos mínimos em , com m=(1, 2, 3...) (Pontos de intensidade zero).

Intensidade da luz difratada por uma fenda[editar | editar código-fonte]

Difração em uma fenda: posição dos mínimos
Praticamente toda a energia luminosa está no máximo central de difração, antes do primeiro mínimo de intensidade. Podemos descobrir a largura do máximo central (, para cada lado do eixo central) com a seguinte fórmula: .
Sendo  o ângulo relacionado à largura da fenda, obtido na equação dos mínimos de intensidade;  é a distância que queremos descobrir e  a distância entre a fenda e o anteparo.
Com a seguinte expressão encontramos a intensidade luminosa em função do ângulo :
, onde 
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



  e os mínimos ocorrem em  (m=1, 2, 3...).

Difração em fenda dupla[editar | editar código-fonte]

A difração em fenda dupla é demonstrada pela experiência da dupla fenda de Thomas Young. Quando uma onda é difratada por duas ou mais fendas, o padrão em um anteparo é uma mistura de difração e interferências construtivas e destrutivas.

Intensidade da luz difratada por duas fendas[editar | editar código-fonte]

,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde  e  (d é a distância entre os centros das fendas e a é a largura das fendas).





Difração (AO 1945: difracção) é um fenômeno que acontece quando uma onda encontra um obstáculo. Em física clássica, o fenômeno da difração é descrito como uma aparente flexão das ondas em volta de pequenos obstáculos e também como o espalhamento, ou alargamento, das ondas após atravessar orifícios ou fendas. Esse alargamento ocorre conforme o princípio de Huygens. O fenômeno da difração acontece com todos os tipos de ondas, incluindo ondas sonoras, ondas na água e ondas eletromagnéticas (como luz visível, raios-X e ondas de rádio). Assim, a comprovação da difração da luz foi de vital importância para constatar sua natureza ondulatória.
Os objetos físicos também têm propriedades ondulatórias (em nível atômico), ocorrendo, portanto, difração com a matéria, o que pode ser estudado de acordo com os princípios da mecânica quântica.[1]
Ainda que a difração ocorra sempre quando as ondas em propagação encontram mudanças, seus efeitos geralmente são marcados por ondas cujo comprimento é comparável às dimensões do objeto de difração. Por isso, a difração é observada mais recorrentemente nas ondas sonoras, pois são ondas com comprimento grande. Interações sonoras com dimensões entre 2 cm a 20 m são perceptíveis para nós, humanos. A difração da luz, nesse sentido, torna-se extremamente mais rara de acontecer, ou perceber, tendo em vista seu pequeníssimo comprimento de onda de 555nm,[2] embora possam ocorrer fenômenos grandiosos com interferência óptica, tais como o arco-íris.
Se o objeto obstrutor oferecer múltiplas fendas, poderá resultar em um padrão complexo de intensidade variável. Isso se deve à interferência, isto é, a uma sobreposição de partes diferentes de uma onda que se propaga até o observador por caminhos diferentes. Richard Feynman escreveu: “Ninguém nunca foi capaz de definir a diferença entre interferência e difração satisfatoriamente. É somente uma questão de linguagem, e não há diferenças físicas específicas ou importantes entre elas. Tem-se, entretanto, que difração é o fenômeno devido a um obstáculo, já interferência refere-se mais a uma interação entre dois ou mais fenômenos ondulatórios."

História[editar | editar código-fonte]

Padrão no anteparo: franjas claras (interferência construtiva) e escuras (interferência destrutiva).
Embora atualmente o fenômeno da difração seja estudado por si mesmo, antigamente seus estudos foram baseados na curiosidade em desvendar satisfatoriamente a discussão sobre a natureza ondulatória da luz.
Os efeitos da difração da luz foram primeiramente analisados e descritos pelo padre jesuíta e cientista italiano Francesco Maria Grimaldi, que cunhou o termo "difração" (do latim diffringere, 'quebrar em pedaços'), referindo-se à luz quebrando-se em diferentes direções. Seu conceito de luz era essencialmente ondulatório e explicou a difração da luz analogamente à difração de ondas na água, em que as ondas do mar quebram seu movimento regular ao encontrar um barco ancorado. Determinou também uma relação entre a densidade do meio onde a luz propaga-se e a sua velocidade.[3] Os resultados das observações de Grimaldi foram publicados postumamente em 1665.
Muitos outros cientistas preocuparam-se em determinar a curiosa natureza da luz, estudando, portanto, os efeitos da difração. Surgiram, no século XVII, dois pensamentos científicos distintos: a teoria corpuscular da luz, defendida por Isaac Newton; e a teoria ondulatória da luz, defendida por Christiaan Huygens. Em ambos os lados, vários cientistas apoiavam uma teoria ou outra com seus conhecimentos e constatações e acabavam refutando inteiramente os aspectos da teoria contrária, pois o conceito de partícula (corpúsculo) é totalmente diferente do conceito de onda. Uma partícula transporta matéria, uma onda não o faz; uma partícula pode se locomover no vácuo, uma onda precisa de um meio para propagar-se (era o que se pensava naquele período); uma onda atravessa obstáculos menores que seu comprimento, uma partícula não o faz.[4]
Escolheu-se o modelo de Newton como o mais coerente por sua explicação sobre as cores e por causa de sua fama devido às suas outras realizações, ainda que a teoria ondulatória de Huygens não tenha caído no esquecimento. Após 123 anos, Thomas Young questionou várias afirmações da teoria corpuscular. As afirmações de Newton não explicavam por que a luz tinha a mesma velocidade mesmo sendo emitida por corpos diferentes e por que certos corpúsculos eram refletidos e outros refratados. Para ele, considerar a luz uma onda explicaria bem melhor esses fenômenos: as ondas luminosas poderiam, assim como as ondas do mar, anular-se umas às outras ou intensificar-se. Young utilizou desses conceitos para explicar a interferência (através do experimento da dupla fenda) e os “anéis de Newton” tão conhecidos. Entretanto, quanto ao fenômeno da difração e da dupla refração, as explicações de Young deixaram a desejar.[5]

Explicação teórica[editar | editar código-fonte]

Representação esquemática da experiência da dupla fenda de Young, em que se observam a difração e a interferência.
O fenômeno da difração está relacionado com as propriedades de ondas ao transportarem energia de um ponto ao outro do espaço. E é intimamente relacionado ao fenômeno da interferência.
Como as ondas são caracterizadas por uma variação periódica de uma qualquer propriedade, podem interagir entre si quando duas ou mais ondas atravessam a mesma região do espaço. Pode acontecer também que uma onda tenha a sua velocidade e/ou direção mudadas, ao interagir com um objeto ou meio material interposto em seu caminho.
A difração, como dito acima, está relacionada com a interação de uma onda com um obstáculo, ou então quando encontra um orifício através do qual possa atravessar um obstáculo.
A onda então, ao contornar ou atravessar um obstáculo, toma diferentes caminhos (diferentes trajetórias), cujos comprimentos totais podem variar. Da variação dos comprimentos totais atravessados, diversas ondas oriundas da original (segundo o princípio de Huygens, que diz que cada frente de onda se comporta como uma nova fonte pontual) acabam por se recombinar ao passar por um dado ponto do espaço.
Ao passarem por esse ponto do espaço, ondas difratadas de uma mesma origem tem a mesma fase e por isso podem interagir uma com a outra naquele ponto. A recombinação se processa porque as ondas, exibindo propriedades periódicas ao longo do espaço e ao longo do tempo combinam seus máximos e mínimos de amplitude de uma maneira que depende do total de ondas interagentes e das distâncias totais percorridas. O resultado disso varia entre dois extremos: num caso, num dado ponto, um máximo de amplitude se combina com um mínimo, produzindo uma anulação parcial ou total da energia da onda (interferência destrutiva). Por outro lado, quando dois ou mais máximos ou dois ou mais mínimos se encontram, a energia observada é maior (interferência construtiva). Esse fenômeno é claramente observado na experiência da dupla fenda, onde uma onda atravessa duas fendas (momento em que ocorre a difração) e após passar pelas fendas, os encontros entre cristas e vales da onda causam a interferência.
Note-se que a amplitude não corresponde diretamente à intensidade da onda, já que a segunda grandeza depende do quadrado da primeira. As grandezas que se somam são as amplitudes, embora as energias totais de uma e outra onda que se interferem seja a soma das energias individuais.
Isso se dá porque, se se ativer à definição estrita de onda como fenômeno periódico e na ausência de dispersão (que é a variação da velocidade de ondas em função dos seus comprimentos de onda), uma onda pode ser representada por uma função senoidal do tempo e do espaço. (Ver abaixo)

Difração por uma fenda[editar | editar código-fonte]

Evolução temporal de um pacote de ondas de matéria (pacote gaussiano) ao incidir sobre uma fenda única. A animação foi construída a partir da solução numérica da equação de Schrödinger dependente do tempo. Observe que há a formação de um máximo central (como esperado).
Quando uma onda atravessa uma fenda que não é estreita (por exemplo, com uma largura a) a intensidade da luz em um anteparo é dependente do ângulo entre a onda e a fenda. A intensidade é máxima na direção frontal da fenda (), mas diminui quando chega em um ângulo que depende da largura da fenda a e do comprimento de onda .[6]
Para descobrir a posição dos mínimos, primeiro dividimos a fenda em duas regiões de largura a/2. Na extremidade superior da fenda, fazemos um raio luminoso r1, e na extremidade inferior, um raio r2. Como as ondas secundárias de r1 e r2 pertencem a mesma frente de onda, elas estão em fase, mas, para produzirem um mínimo devem estar defasadas de . Supondo que r1 e r2 sejam paralelas e formem um ângulo  com o eixo central, a diferença entre as distâncias percorridas por r1 e r2 será . Igualando essa diferença a , obtemos o primeiro mínimo de intensidade em .
Fazendo o mesmo processo para mais ondas, descobrimos os próximos mínimos em , com m=(1, 2, 3...) (Pontos de intensidade zero).

Intensidade da luz difratada por uma fenda[editar | editar código-fonte]

Difração em uma fenda: posição dos mínimos
Praticamente toda a energia luminosa está no máximo central de difração, antes do primeiro mínimo de intensidade. Podemos descobrir a largura do máximo central (, para cada lado do eixo central) com a seguinte fórmula: .
Sendo  o ângulo relacionado à largura da fenda, obtido na equação dos mínimos de intensidade;  é a distância que queremos descobrir e  a distância entre a fenda e o anteparo.
Com a seguinte expressão encontramos a intensidade luminosa em função do ângulo :
, onde  e os mínimos ocorrem em  (m=1, 2, 3...).

Difração em fenda dupla[editar | editar código-fonte]

A difração em fenda dupla é demonstrada pela experiência da dupla fenda de Thomas Young. Quando uma onda é difratada por duas ou mais fendas, o padrão em um anteparo é uma mistura de difração e interferências construtivas e destrutivas.

Intensidade da luz difratada por duas fendas[editar | editar código-fonte]

,
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS



Onde  e  (d é a distância entre os centros das fendas e a é a largura das fendas).

Difração por uma abertura circular[editar | editar código-fonte]

Agora, a abertura é uma fenda de diâmetro , e não mais uma abertura retangular.
A posição do primeiro mínimo na figura de difração de uma abertura circular é dada por .

Redes de difração[editar | editar código-fonte]

A rede de difração é uma generalização da fenda dupla a  fendas igualmente espaçadas. A rede de difração decompõe a onda num espectro, mostrando os máximos e mínimos associados a cada comprimento de onda, que resultam respectivamente de interação construtiva e interação destrutiva entre os feixes emitidos com diferentes ângulos.
Considerando uma rede de difração com  fendas, tem-se que os máximos e os mínimos observados no espectro obtido obedecem às seguintes equações:
  • Máximos: 
  • Mínimos: 
  • X
  • FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Onde:
  •  - distância entre as fendas;
  •  - ângulo entre o feixe e a normal à rede de difração;
  •  - comprimento de onda da radiação;
  •  - número de fendas da rede de difração;
  •  - número natural que varia de  a  (uma vez que entre dois máximos de ordem consecutiva existem  mínimos).
Note-se que o número natural  designa a ordem do máximo (ou dos  mínimos correspondentes) em estudo. Por exemplo, o máximo de 3.ª ordem é o máximo que surge no espetro que se obtém, substituindo  por  na equação que define as posições dos máximos.

Difração de Fraunhofer[editar | editar código-fonte]

É o tipo de difração mais simples. Pode-se dizer que este tipo de difração é aquela em que a onda difratada é plana (pelo menos aproximadamente, na pressão de precisão observado) e exige um tratamento matemático mais simples.
X

FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE  INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.  E DE ESTADOS TRANSICIONAIS


Difração de Fresnel[editar | editar código-fonte]

Ponto Claro de Fresnel[editar | editar código-fonte]

Figura de difração de um disco, mostrando o ponto claro de Fresnel no centro da sombra do objeto.
Em 1819, um concurso promovido pela Academia Francesa de Ciências, visando prova que a teoria ondulatória da luz estava errada, premiaria o melhor trabalho sobre difração. O vencedor foi o físico e engenheiro Augustin-Jean Fresnel, que defendia a difração. Entretanto, Siméon Denis Poisson, não satisfeito com a teoria de Fresnel, alertou a comissão julgadora sobre algo estranho que aconteceria caso Fresnel estivesse certo. Ao passarem pela borda de um objeto esférico ou um disco, as ondas luminosas convergiriam para a sombra desse objeto, observando-se um ponto de luz no centro da sombra. Um teste foi realizado pela comissão, provando que o ponto claro de Fresnel existia.

Difração de Fresnel[editar | editar código-fonte]

É o tipo de difração cujo tratamento matemático é mais complexo. Nesse caso, a onda que se desloca não é plana. Para se calcular a distribuição da intensidade da luz difratada em função do ângulo de espalhamento é comum se usar da espiral de Cornu.
A equação da difração de Fresnel é usada para calcular o padrão de difração criado por ondas passando por uma fenda ou em volta de um objeto, quando visto relativamente próximo do objeto (diz-se que a onda se propaga em um "campo próximo". Esse campo pode ser calculado pelo número de Fresnel). Múltiplas difrações de Fresnel podem causar a reflexão especular.